Earned Value Management Systems
Application Guide

May 4, 2011

Revision 1*

National Defense Industrial Association (NDIA)
2111 Wilson Blvd., Suite 400
Arlington, VA 22201
(703) 522-1820
Fax (703) 522-1885
www.ndia.org

* Updated February 24, 2014 to change PMSC to IPMD

© 2011 National Defense Industrial Association, Integrated Program Management Division (IPMD)
Permission to copy and distribute this document is hereby granted provided that this notice is retained on all copies, that copies are not altered, and that the NDIA IPMD is credited when the material is used to form other copyrighted documents.
Table of Contents

1 Introduction ... 1
2 Definitions ... 2
3 Acquisition Process and Earned Value Management .. 4
 3.1 Acquisition Life Cycle ... 4
 3.1.1 Acquisition Planning ... 5
 3.1.2 Acquisition Management ... 7
 3.2 Earned Value Management .. 9
 3.3 Risk and Opportunity Management .. 10
 3.4 Integrating Risk Management with Earned Value Management 11
4 EVM Application Planning .. 12
 4.1 Organizing for EVM ... 12
 4.1.1 Governance ... 13
 4.1.2 Risk-Based Application ... 14
 4.1.3 Scalability ... 14
 4.2 Developing the Program Budgets ... 15
 4.2.1 Program Budget ... 16
 4.2.2 Program Risk-Adjusted Budget ... 17
 4.3 Contracting for EVM ... 17
 4.3.1 Contract Types ... 18
 4.3.2 Incentives ... 19
 4.3.3 Pre-Systems Acquisition Planning ... 20
 4.3.4 EVM Systems Acceptance .. 21
 4.3.5 Integrated Baseline Review ... 21
 4.3.6 Surveillance .. 22
5 Integrated Performance Management and Measurement ... 23
 5.1 Measuring Performance Progress ... 23
 5.2 Management Analysis .. 24
 5.3 Program Progress Communication .. 25
 5.4 Change Management ... 26
6 EVM Application Guidance .. 28
 6.1 EVM Application Framework .. 28
 6.2 ANSI/EIA-748, Earned Value Management Systems ... 29
 6.3 NDIA IPMD Earned Value Management Systems (EVMS) Application Guide ... 29
 6.4 NDIA IPMD Earned Value Management Systems Intent Guide 30
 6.5 NDIA IPMD Earned Value Management Systems Acceptance Guide 30
 6.6 NDIA IPMD Integrated Baseline Review (IBR) Guide 30
 6.7 NDIA IPMD Surveillance Guide ... 31
Acronyms ... 33
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Key Functional Activity Flow</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2</td>
<td>WBS Evolution</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3</td>
<td>WBS/Organization Matrix</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Capital Asset Life Cycle Cost and Risk Application</td>
<td>8</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Relationships of Program Plan and Schedule with WBS</td>
<td>9</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Risk Management Process</td>
<td>11</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Project Level Earned Value Management and Risk Management Integration</td>
<td>12</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Planning Phase</td>
<td>16</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Earned Value Management Data</td>
<td>24</td>
</tr>
<tr>
<td>Figure 10</td>
<td>PMB Replan</td>
<td>27</td>
</tr>
<tr>
<td>Figure 11</td>
<td>PMB Reprogram</td>
<td>28</td>
</tr>
<tr>
<td>Figure 12</td>
<td>NDIA Guide Applicability</td>
<td>29</td>
</tr>
</tbody>
</table>
1 Introduction

The primary objective of this guide is to describe for all organizations, which are implementing the American National Standards Institute/Electronic Industry Alliance’s (ANSI/EIA-748), Earned Value Management Systems (Current Version), the importance of planning the application of Earned Value Management (EVM) through all phases of the acquisition life cycle. Throughout the remainder of this guide, ANSI/EIA-748 (Current Version) will be referred to as “ANSI/EIA-748.”

EVM is recommended for all programs where delivery of a product or other objectively measurable outcome is intended. In such programs, successful execution of performance objectives depends to a large degree on the quality of the planning effort for the application of EVM. EVM is an effective integrator of the work scope, schedule, resources, and risk that should be applied consistent with the program type, complexity, and size. ANSI/EIA-748 provides a scalable EVM approach that can be adapted to any size project, program, or enterprise.

This guide elaborates on the performance-based management requirements defined by the Office of Management and Budget (OMB) in OMB Circular A-11, Part 7, “Planning, Budgeting, Acquisition and Management of Capital Assets.” This guide also provides the context for the application of EVM within a notional Federal Government agency acquisition life cycle, and therefore contains government acquisition terminology.

In addition, insight into the use of other NDIA Integrated Program Management Division (IPMD) guides is provided. This helps an organization’s program and senior management, within government, commercial, or industry customer and supplier organizations, to establish a high confidence that an Earned Value Management System (EVMS) meets and complies with the organization’s implementation of ANSI/EIA-748. Neither these guides nor ANSI/EIA 748 should be interpreted as specific requirements for an EVMS; rather they are intended to define and explain EVMS guidelines in sufficient detail to allow an organization to implement an effective EVMS.

This Guide will assist in:

- Applying EVM throughout the acquisition life cycle including EVM application planning, contracting for EVM, implementation and use of EVM, and EVMS review and acceptance. The EVMS review and acceptance process allows multiple government agencies to accept an EVMS without imposing unnecessary duplication of acceptance reviews.
- Planning for a program risk-based EVM application by incorporating systems engineering, cost estimating, risk management and contracting activities to develop and manage the cost, schedule and performance goals and objectives for a program.
- Organizing to facilitate EVM governance and systems compliance.
- Measuring performance progress and managing change.

“Project”, versus “Program”, is used in this Guide to identify all work authorized by a contract. Generally, a project involves a planned effort to achieve an outcome, the progress toward which is discretely measurable. A project will have an established scope, schedule and dollar value. A program may consist of just one project or multiple projects within a portfolio.

Users of this guide are encouraged to submit recommended revisions to the NDIA IPMD.
2 Definitions

<table>
<thead>
<tr>
<th>Acceptance Authority (EVM System Acceptance Authority)</th>
<th>An organization or party within a Government Agency or contractor organization responsible for recognizing that a supplier’s EVM system proposed for use on a prime or subcontract, or for in-house work, meets the guidelines in ANSI/EIA-748.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Risk</td>
<td>The likelihood that the program will not accomplish planned tasks within the planned budget and may consist of inaccurate/unreasonable cost estimates or fail to manage to cost, schedule, or performance objectives.</td>
</tr>
<tr>
<td>Discrete Work</td>
<td>Tasks that are related to the completion of specific end products or services, which can be separately planned and measured.</td>
</tr>
<tr>
<td>Earned Value (EV)</td>
<td>The value of completed work expressed in terms of the budget assigned to that work, also referred to as Budgeted Cost for Work Performed (BCWP). It provides an objective measure of the value of completed work expressed in terms of the budget assigned to that work.</td>
</tr>
<tr>
<td>Earned Value Management (EVM)</td>
<td>A management methodology, which integrates a program’s technical scope, schedule, and resources with program risk in a baseline plan, against which progress is measured to provide metrics indicative of program progress and performance trends useful for management decision-making.</td>
</tr>
<tr>
<td>Earned Value Management System (EVMS)</td>
<td>An integrated set of processes, people and tools for managing projects using earned value management, which conforms to the guidelines found in ANSI/EIA 748 (current version).</td>
</tr>
<tr>
<td>EVM System Owner</td>
<td>The organization or party responsible for assuring the implementation and use of an Earned Value Management System compliant with the ANSI/EIA 748. Examples of EVM System Owners include contractors, subcontractors, Government program offices, and Government activities.</td>
</tr>
<tr>
<td>Integrated Baseline Review (IBR)</td>
<td>A risk-based review conducted by Program Management to ensure mutual understanding between the customer and the supplier of the risks inherent in the supplier’s Performance Measurement Baseline (PMB) and to ensure the PMB is realistic for accomplishing all the authorized work within the authorized schedule.</td>
</tr>
<tr>
<td>Integrated Project Team</td>
<td>A multi-disciplinary team of acquisition professionals led by a program/project manager, which is responsible and accountable for planning, budgeting, procurement and life-cycle management of an investment to achieve its cost, schedule, and performance goals.</td>
</tr>
<tr>
<td>Management Reserve (MR)</td>
<td>An amount of the total budget set aside for unplanned, in scope effort that may arise during the course of the project, which cannot be identified in advance. Management reserve budget should be commensurate with the level of risk identified by the project and/or withheld for management control purposes.</td>
</tr>
<tr>
<td>Performance budget</td>
<td>A budget presentation that clearly links performance goals with costs for achieving a target level of performance. In general, a</td>
</tr>
</tbody>
</table>
performance budget links strategic goals with related long-term and annual performance goals (outcomes) with the costs of specific activities to influence these outcomes about which budget decisions are made.

Performance Measurement
A method of determining progress and a means for evaluating efficiency, effectiveness, and results. Performance measurement should include program accomplishments in terms of outputs (quantity of products or services provided) and outcomes (results of providing outputs in terms of effectively meeting intended agency mission objectives), indicators, statistics or metrics used to gauge program performance.

Performance Measurement Baseline (PMB)
The total time-phased budget plan (Budget at Completion) against which program performance is measured. It is the schedule for expenditure of the resources allocated to accomplish program scope and schedule objectives, and is formed by the budgets assigned to control accounts and applicable indirect budgets. The PMB also includes budget for future effort assigned to higher level accounts, also referred to as summary level planning packages, plus any undistributed budget. Management Reserve is not included in the PMB, as it is not yet designated for specific work scope.

Program
A major, independent part of a capital asset or system that involves a planned effort to achieve an outcome, the progress toward which is discretely measurable. A program may be comprised of multiple projects, delivery orders, task orders, or other recognized terms indicating a bilateral agreement between contracting parties.

Program Manager (PM)
The individual designated with responsibility for and authority to accomplish program objectives for planning, budgeting, acquisition, and management to meet the user’s operational needs. Also may be identified as Project Manager or Product Manager.

Program Budget (PB)
The total budget for the program including all allocated budget, management reserve, and undistributed budget. In this context, “program” includes all government and contracted resources used to perform all contracts and projects. It does not include program funding and schedule risk-adjusted contingencies.

Program Risk-Adjusted Budget (PRB)
The total program budget that includes an additional amount of funding and schedule above the PB that customer management determines may be necessary to ensure project/program success. The PRB for a government program should be established at a level of probability sufficient to provide acceptable confidence that a program can achieve 90% of its performance, cost and schedule objectives within the approved budget as required by statute. The amount above the PB covers risk that was not identifiable through the IBR and other risk management approaches, but that history on similar programs or the amount of total risk on the particular program indicates will likely be needed to ensure sufficient resources will be budgeted for project/program success. The difference between the PB and PRB is held at a level above the program level to be released to the program when justified to fund cost and schedule.
overruns from the PMB that happen through no fault of the program management process.

Project
A project has defined technical scope, schedule, and cost. Generally, a project comprises all effort authorized by a contract or other authorization document received from a customer, e.g., a subcontract or inter-organizational transfer (IOT), but it may also be an internally-defined and authorized effort. There may be multiple projects within a program.

Risk
An uncertain future event or situation that could impact the ability to achieve overall program requirements within defined cost, schedule, and technical objectives. Risk has two components: 1) the probability (or likelihood) of a particular outcome and 2) the consequences (or impact) of that outcome. The consequences of risks are typically thought of as negative; a risk event with positive consequences is referred to as an opportunity.

Schedule Risk
The likelihood that the program actions cannot be accomplished in the planned program timing and may result from unrealistic schedule estimates or problems with program execution.

Schedule Risk Assessment
A formal process of determining schedule health used to predict the probability of project completion by contractual dates, or in-house commitment dates.

Technical Risk
The likelihood that the program, as planned, will be unable to deliver a product to satisfy the technical/operational requirements.

Undistributed Budget
Budget associated with specific work scope or contract changes that have not been assigned to a control account or summary level planning package.

Work Breakdown Structure (WBS)
A product-oriented division of program tasks depicting the breakdown of work scope for work authorization, tracking, and reporting purposes.

3 Acquisition Process and Earned Value Management

3.1 Acquisition Life Cycle

- Several acquisition disciplines are essential to establishing and operating an integrated EVM process within the acquisition life cycle, especially Program Management, Systems Engineering, Cost Estimating, Risk Management and Procurement.

- Integrated Project Teams should devote the planning time needed to create an adequate Work Breakdown Structure at program initiation and to keep it current throughout program execution.

The program or project acquisition life cycle starts with concept analysis progressing through technology definition, requirements planning, acquisition and finally through operations or management. Although the terminology may differ throughout government and industry, the processes are generally the same. These processes typically include decision points where
executive boards review and approve a program’s entry into the next phase or stage, based on satisfactory completion of exit criteria from the prior phase or stage. The Capital Programming Guide supplement to OMB Circular A-11, Part 7 reflects three lifecycle phases of the capital programming process: Planning and Budgeting, Acquisition, and Management-In-Use.

These three phases when viewed from a systems perspective may be identified as Pre-Systems Acquisition Planning, Systems Acquisition and Systems Sustainment as shown above.

Pre-Systems Acquisition Planning, for purposes of this Guide, includes linking planning and budgeting for long-range planning of capital assets in a strategic annual plan that describe an organization’s incremental progress toward achieving its strategic goals and objectives.

The Systems Acquisition Phase begins after the agency has received funding for a segment, module, or the entire asset and ends when the asset is delivered and fully operational. It includes both in-house organization work as well as contracted work. The in-house work must be managed with the same rigor as contract work. In-house operations are expected to achieve the cost, schedule, and performance goals to ensure success of the project, just as with contracted work.

The Systems Sustainment Phase begins after delivery of the first operational units of the system and continues until the end of the systems life-cycle. The Systems Sustainment phase is generally the longest phase of the investment or systems life cycle and represents the operations and management of the system as deployed.

In order to understand the application of EVM it is necessary to view the requirement in context of the federal capital asset planning or investment lifecycle as defined in OMB Circular A-11 Part 7 and the Capital Programming Guide and the activity flow between the key functions displayed in Figure 1.

![Figure 1. Key Functional Activity Flow](image)

3.1.1 Acquisition Planning

Several acquisition disciplines are essential to planning an acquisition through its life cycle. At initiation of a major acquisition, the acquisition planning team should include individuals with skills in the following areas: Project Management, Contracting, Cost Estimating, Risk Management, Sustainability, Scheduling, Users, Budget, Technical Experts, Information Resource Management, Value Management, and EVM. Staff with other appropriate skill sets should also participate.

Planning for EVM and risk management begins at program inception with the definition of the work and extends through the assignment of the work to the performing organizations. Work is defined using a WBS that displays and defines the product(s) and relates the elements of work to each other and to the end products that completely define the program. Risks identified in the planning should be assigned to specific elements of the WBS. Risks should be identified in the risk register and referenced to the WBS Dictionary to serve as the basis for the development of the risk-adjusted baselines. Department of Defense (DoD) Military Standard 881 (Current
“Work Breakdown Structures for Defense Materiel Items” is a widely used WBS reference which many non-defense organizations have adapted for use on their programs. Although the Standard is DoD oriented, the concepts and approaches of good WBS development are applicable regardless of the defined end-item.

The evolution of a WBS during a program life cycle is illustrated in Figure 2. As program planning proceeds, all affected organizations – especially systems engineering, cost estimating, contracting and program management – should work together to establish the program WBS, refine it as the program requirements firm up, and extend it to individual projects and contracts.

Organizations that have similar programs should consider using a standard WBS template to support consistent program definition and to facilitate an integrated program management process.

Even if the preferred solution has not been determined, it is essential that program WBS planning begin promptly upon program initiation during the earliest stage of the planning phase. The importance of devoting adequate time to “up front” planning to create a well-developed WBS and to keep it current throughout program execution cannot be overstated.

Program management’s use of EVM depends on a well-developed WBS to ensure that a program is completely defined. Program experts in collaboration with experts in the areas of Systems Engineering, Cost-Estimating, Procurement, Risk Management, Scheduling, and EVM need to develop a WBS as a common framework within a given program, among related programs and across an organization’s portfolio. For example, the program WBS established during concept definition will provide the framework for estimating the program’s cost and risk during the pre-systems acquisition planning and for developing the program schedule. The cost
estimate and program WBS provide the basis for suppliers to extend the WBS to achieve integrated cost, schedule and technical performance management using EVM during systems acquisition.

3.1.2 Acquisition Management

Integration of work and performing organizations is achieved by identifying the organizational levels where responsibility for work scope, schedule and resource management for each WBS element is assigned. This management control point, known as a “control account,” is unique to each organization and varies depending on how the organization operates, as illustrated in Figure 3. For example, an organization that is functionally oriented may have more control accounts than an organization that manages with IPTs because these teams frequently have a broader span of control. Control accounts should be established at a level high enough to provide sufficient management flexibility, yet low enough to ensure that all significant variances are identified early enough to take corrective action. The level selected for control accounts may vary among programs and even within programs, for example, when a decision is made to manage a high risk WBS element at a relatively low level.

Figure 3. WBS/Organization Matrix

Managing a major investment takes a dedicated IPT of acquisition professionals along with personnel with other skills such as legal, budget, finance, personnel, and others needed to achieve a successful program. The size of the dedicated staff assigned to the IPT and their location will vary depending on the phase of the investment, but individuals with acquisition skill sets must be assigned to the team and they should be co-located during the planning phase and available when needed throughout the remainder of the investment’s life cycle. Control Account Managers (CAMs) and integrated project teams are an integral part of the acquisition process. They support the PM and operate in a spirit of teamwork with participants empowered to make commitments for organizations they represent, enabling decision-makers to make the right decisions at the right time. The entire team needs to be together to the extent possible during the planning phase so that all disciplines participate in the development of the statement of work and the cost estimates to ensure their concerns are addressed.
Once the program requirements and end products are defined, the cost estimator can use this information to develop the program cost and schedule estimates. This cannot be accomplished without first establishing an estimating structure and WBS, identifying cost drivers, and collecting cost, schedule, technical, and programmatic information to form the basis of estimate. Throughout this process, risk must be identified to ensure the range of possible outcomes is considered. This concept (illustrated in Figure 4) shows the life cycle and its relationship to program management and risk assessment. Managing these costs can be accomplished by ensuring the program has a clear integrated program execution plan and schedule as illustrated in Figure 5. This must include the probability of success associated with the total program with each element in the WBS if the program technical, schedule and cost objectives are to be met.

Figure 4. Capital Asset Life Cycle Cost and Risk Application
3.2 Earned Value Management

- Earned Value (EV) is the value of completed work expressed in terms of the budget assigned to that work, also referred to as Budgeted Cost for Work Performed (BCWP).

- Earned Value Management (EVM) is a management methodology, which integrates a program’s technical scope, schedule, and resources with program risk in a baseline plan, against which progress is measured to provide metrics indicative of program progress and performance trends useful for management decision-making.

- An EVM System (EVMS) is an integrated set of processes, people and tools for managing projects using earned value management, which conforms to the guidelines found in ANSI/EIA 748 (current version).

EVMS provides program management with a capability to integrate the work scope with the schedule and cost elements for effective program planning and control through the following principles.

- Planning all of a program’s work scope to completion
- Defining the work scope in logical components in order to assign management responsibility for technical, schedule, and cost objectives, and for risk management.
• Integrating of work scope, schedule, and cost objectives into a performance measurement baseline plan from which accomplishments may be measured and baseline changes controlled

• Recording of actual (or estimated) costs incurred in the performance of work

• Objectively assessing the accomplished work at the work performance level

• Analyzing variances from the performance measurement baseline, forecast of impacts, and estimates at completion for schedule and cost

Effective application of EVM provides customer and supplier program managers timely, reliable and actionable integrated cost, schedule and technical performance information, for both the total capital investment program and the individual supporting projects or contracts.

• The nature of the work (e.g. inherent complexity, external dependencies, schedule, and/or cost risks) is a key consideration in establishing a performance management approach.

• EVM can be objectively applied to discrete work. Level of effort must be evaluated using other means that are not related to schedule milestones or objective measures of progress.

For the benefits of EVM to be fully achieved, comprehensive planning at the outset, combined with the establishment and disciplined maintenance of a performance measurement baseline, is required. The combination of comprehensive planning, baseline maintenance, and earned value yields earlier visibility into program performance and estimated completion projections than is provided by non-integrated management methodologies for planning and control. Systematic implementation of EVM throughout the organization facilitates comparison of program performance, enabling managers to make better-informed decisions.

3.3 Risk and Opportunity Management

• The objective of the Risk Management process is to identify risks and opportunities and manage them effectively to minimize cost, schedule, and performance impacts to the program.

• The risk management process relies on inputs from program personnel, customers, and other sources, as well as program management and analysis tools utilized on the program.

The successful management of risk requires proactive identification and assessment of potential risks actions, plus their planning and execution necessary to respond to them. The objective of the Risk Management process is to identify risks and opportunities. In addition the process will aid in how to handle risk and opportunity plans or responses, allocate program resources for risk activities, and manage them effectively to minimize cost, schedule, and performance impacts to the program. A basic risk management process is illustrated in Figure 6.

The process allows the program team to identify and mitigate risks relative to program cost, schedule, and performance objectives. Consequently, risks are stated in terms of uncertainty relative to specific consequences, either positive or negative, and in terms of their potential impact on cost, schedule, and/or performance parameters of planned program tasks.

The risk management process relies heavily on the free and open flow of information exchanged by all program team members. The Program Manager is responsible for risk
management, but usually delegates that responsibility to a designated Risk Manager for the program. The Risk Manager leads and facilitates the Risk Management process. The risk management process relies on inputs from program personnel, customers, and other sources, as well as program management and analysis tools utilized on the program.

3.4 Integrating Risk Management with Earned Value Management

- Successful project management requires proactive identification and assessment of potential risks in the Planning and Budgeting phase, plus the planning of actions necessary to respond to them.
- Risk is integrated with EVM processes during the planning and execution phases of the program to improve performance and enable more reliable predictions of project outcomes.

Because of the differences in the nature of the work and the objectives for each phase of the defined acquisition lifecycle, methodologies for executing, managing, and evaluating performance, must be used. Identifying the deliverable product or service provides useful information for structuring a management system that facilitates delivery of the product or service. EVM is not necessarily appropriate for all phases but is applicable where significant risks (uncertainty) in cost, schedule and scope objectives are thought to exist.

Risk is integrated with EVM processes during the planning and execution phases of the program to improve performance and enable more reliable predictions of project outcomes as illustrated in Figure 7. During the planning phase, the PM must decide, given the risks and opportunities identified, how much budget to allocate and how much to hold in management reserve. Schedule risk assessments are performed to identify schedule risks. Budget for risk handling is allocated to the control accounts based on their significance and where in the WBS they exist. As the baseline plan is executed, the EVM metrics provide insight into the success of risk/opportunity handling plans, the realization of risks and the capture of opportunities. Management reserve is issued (or returned to replan future work) as needed to address realized risk or take advantage of captured opportunities. Quantified risks and opportunities are taken into account in the Estimate to Complete (ETC) for each control account and the overall project’s best, worst, and most likely EACs.
4 EVM Application Planning

4.1 Organizing for EVM

- Organizing for EVM application begins at program inception with the definition of program work and the identification of the organizational elements responsible for planning and control.
- Integration of work and performing organizations is achieved by identifying the WBS and organizational elements where work scope, schedule, resource and risk management will occur.

EVM applies to the total program effort, including both customer resources and contracted work, to better manage complex, high-risk programs. In other words, EVM is applicable to the in-house (customer) portion of the program effort as well. All program work activities performed by any organization are derived from the program and extended WBS, which should be managed using EVM.

- Customer Organizations. Customer organizations and personnel, while commonly used to perform program management and oversight, also may perform engineering, testing, deployment and logistics support functions. Customer organizations may act as system integrators.
- Major Suppliers. Major suppliers are commonly employed in the areas of design, engineering, development, deployment and support functions.
- Support Suppliers. Support suppliers commonly perform support roles in one or more areas of program management, engineering, configuration management, test and logistics. Support suppliers may provide services and logistics support functions.
4.1.1 Governance

Effective EVM implementation depends on several management disciplines. Typical EVM responsibilities performed by the PM, Contracting Officer and EVM System Owner include those listed below.

Program Manager

- Leads development of the program’s technical approach, cost estimates, schedule, risk/opportunity management plans and PMB;
- Determines the management approach for a program and applicable contracts based on program size, complexity and risk;
- Manages the program budget and provides PMB performance information to management, including corrective actions and/or baseline change requests;
- In consultation with the contracting officer, develops the acquisition strategy for obtaining the selected solution and establishes the appropriate EVMS and reporting applications for each contract;
- In coordination with the contracting officer, conducts the Integrated Baseline Review (IBR);
- Prepares the program for an EVM System Compliance Evaluation Review, if required;
- Ensures the integrated project teams are adequately trained in program management, EVM, risk management and other program management disciplines;
- Incorporates supplier contract performance and risk/opportunity data into the program performance information using the program WBS;
- Estimates cost and schedule at completion based on performance data.

Contracting Officer

- In consultation with the PM, develops the acquisition strategy for obtaining the selected solution and establishes the appropriate EVM and performance data requirements for each contract and project;
- In coordination with the PM establishes contractual requirements for the IBR;
- Prepares the contract solicitation to include the proper EVMS contract clauses and associated reporting requirements;
- Formally receives, delivers comments and accepts contract deliverables;
- Coordinates with the EVMS owner to ensure that the organization’s EVMS meets the requirements of the contract.

EVM System (EVMS) Owner

- Assists PMs and business managers to apply EVMS requirements to programs and contracts in accordance with the applicable organization’s policy/process;
- Coordinates EVMS activities with other government agencies and with industry;
- Develops policy and guidance for EVMS;
- Consults with teams on EVMS issues during planning and implementation phases;
- Advises and assists programs with IBRs;
- Coordinates EVMS surveillance and maintains information about acceptance of suppliers’ EVMS;
- Coordinates EVMS reviews;
- Manages and/or provides EVMS training.

4.1.2 Risk-Based Application

Significant investments require a clearly understood process for ensuring that the program budget, expected outcomes and cost/schedule performance measurements are integrated with risk management. Risk management begins with evaluating the WBS for cost, schedule and technical risk. Risks in each of these areas for each WBS element should be identified, analyzed, and quantified in terms of potential cost or other impact to the program. Risk identification involves identifying and analyzing program areas and critical technical elements to identify and document the associated risk. Assumptions and constraints also need to be identified and analyzed for cost impact. Risk analysis involves examining each risk issue to determine the probability of the risk occurring and the cost, schedule and technical consequences if the risk occurs. To a degree acceptable to management, the cost of the risk occurrence is added to the program budget and the result of this analysis is a risk-adjusted cost estimate.

The program’s milestone schedule should also be adjusted for risk. Measurable WBS elements significant to a project milestone should be analyzed for most optimistic, most pessimistic and most likely durations. A risk-adjusted schedule will have finish dates that reflect the likelihood of a risk event occurring and its associated schedule impact. If schedule delays will affect cost, this should be reflected in a risk adjusted cost estimate.

A significant program investment demands a mechanism to ensure that the expected program schedule and cost outcomes and cost/schedule performance measurements are integrated with risk management. Without this integration, budget may be expended without regard to specific events, products or other deliverables. The decision to apply EVM should be based on the nature and characteristics of the work to be performed on the contracts and projects. Careful evaluation of the size, complexity and estimated risk will influence decisions such as the type of contract(s) awarded as well as the application requirements for an EVMS.

4.1.3 Scalability

EVM lends itself most readily to work that can be defined in terms of cost, schedule and technical performance objectives. Such work occurs primarily in a program’s development and production phase. However, the primary consideration should be the nature of the work. For example, work done during a planning phase to develop a prototype or test article lends itself to performance management using EVM. Similarly, system upgrades or maintenance, repair and overhaul work done during a program’s operational or management-in-use phase is measurable using EVM techniques.

A program’s planned duration should also be considered. For less complex projects (generally considered to be less than a year), it is still important that appropriate cost, schedule and risk management processes be applied for effective monitoring and control. Their implementation may be less detailed than required on more complex projects.

The guidelines in ANSI/EIA-748 are “scalable”. That is, they describe the attributes of an effectively integrated management system. They do not prescribe a specific method of implementation. In addition, one or more of the 32 guidelines may not apply to a given program or organization. This inherent flexibility is the strength of EVMS that has contributed to its
continued effectiveness. The following are examples of scalability in the application of the guidelines and in implementation of an EVMS.

- **Applicability.** Some guidelines are unique to certain types of programs. For example, “Identify unit costs, equivalent unit costs, or lot costs when needed” refers to a manufacturing environment or to deliverables priced on a unit, equivalent unit or lot basis. Another guideline requires that all indirect costs allocated to the contract be recorded. If indirect costs are not identifiable or do not exist, the guideline would not apply.

- **Frequency.** Performance is measured at least monthly or aligned with the organization’s normal accounting period. A best practice is to link the EVMS to an organization’s normal management business rhythm, which may be as frequent as weekly. Although actual cost information may not be available from an accounting system, the EVMS may use actual or estimated costs. Estimated costs should be based on labor hours, units or similar measurable basis used for management and reconciled with the actual cost accounting data when they become available.

- **Accounting Systems.** The guidelines per se do not include requirements for accounting systems. Major federal suppliers meet well-established government accounting system requirements, which are specified in the FAR and the Cost Accounting Standards. These major suppliers use their accounting systems to accumulate actual cost consistent with budgets and earned value. They may also estimate cost to compare with earned value when vendor billing and payments lag or precede the earned value data. Most government organizations and many small and medium suppliers do not have equivalent accounting systems and must use alternative approaches for accumulating cost to provide timely actual cost information for EVMS.

- **Program Size.** Small contracts and projects may be no less critical to an organization than larger, more complex ones. In using EVM for such contracts and projects, organizations must consider the depth of implementation detail. For example, ANSI/EIA-748 does not define a specific decomposition level for the WBS.

- **Reporting.** Customer reporting requirements should be limited to that essential for program oversight and contract administration. Electronic reporting or direct access to supplier data is preferable because they shorten the delivery cycle time. When integrated project teams use EVM data routinely to manage the program and record the actions taken, reporting may be seen as a by-product of the implemented management process.

4.2 Developing the Program Budgets

> When programs, projects and contracts contain cost and schedule risk, the risks are managed by selecting the appropriate contract type and by establishing cost and schedule reserves at all management levels.

Many programs will need to develop two budgets, the Program Budget and the Program Risk-Adjusted Budget. The Program Budget (PB) is the budget for all government and contracted resources that will be used to perform all contracts and projects comprising the program. The PB includes the performance measurement baseline, along with management reserve and undistributed budget. The PB process is described in section 4.2.1 below.

OMB’s Capital Programming Guide also allows the use of a Program Risk-Adjusted Budget (PRB) when necessary because of the discipline and realism it brings to the budgeting process.
A PRB allows managers to manage for success, by including budget for risks unknown at the time the acquisition is planned, within the statutory requirement that at least 90% of cost, schedule, and performance goals be achieved. OMB must approve the PRB and programs must ensure that OMB fully understands the rationale for the additional, contingent budget and schedule requested in excess of the approved Program Budget.

If a PRB is approved, the budget in excess of PB is retained at a level above the program for use only when fully justified. Bonuses for government personnel and incentives for suppliers are based on achieving the program goals at or below the PB. However, completing the program within the PRB is by definition a successful program. Not meeting the PRB would be considered a failed program, absent an approved change to the PRB. The following sections discuss the development of the PB and the use of PRB contingencies necessary when EVM indicates the PB will be breached.

4.2.1 Program Budget

Measuring the progress of a program cannot be accomplished without understanding the PB and PMB. The PMB should represent the entire program based on judgments concerning cost, schedule, and technical risk and comprise all of the technical requirements (size, weight, capability, performance, etc.). These requirements are defined through the systems engineering process that determines how the program will be conceived, developed, produced, and managed through its life cycle. This process provides a clear understanding of the program by defining the end products.

Figure 8 illustrates the result of a program planning phase, incorporating the results of systems engineering, cost estimating, and risk planning to develop the overall cost, schedule and performance goals for a program. It also illustrates how EVM supports the overall program cost and schedule risk management consistent with industry and government needs for capital asset management.

The line labeled PB, “Program Budget”, represents “the total budget for the program including all allocated budget and undistributed budget, i.e., the PMB, plus management reserve.” In this context, “program” includes all organization resources and contracted supplier resources used.
to perform all contracts and projects. Organizations allocate budgets to their PMBs that include allowances for schedule and cost uncertainty, which provide challenging but achievable targets. Some of this allocated budget may be assigned for risk handling activities that have been incorporated into the schedule and PMB. By implementing EVM at the program level, agencies can summarize in one PB all resources required to execute the program, whether performed by an organization or supplier. The schedule milestone “B” represents the required completion date for those projects and contracts.

Contracts and projects also include cost and schedule management reserves appropriate to the level of risk and contract type. Management reserves are established at appropriate confidence levels based on risk tolerance and represent the difference between the PB and the Budget at Completion (BAC). When time phased, the BAC establishes the PMB. Budget allocated to the PMB should reflect the PM’s assessment of the potential for under runs or over runs due to the opportunities and risks. Cost management reserve is not time-phased. The time between schedule milestones “B” and “C” in the above illustrates the project/contract schedule reserve and milestone C represents an early finish or “challenge” schedule for the performing organizations.

4.2.2 Program Risk-Adjusted Budget

The shaded area in Figure 8, labeled “Program Funding and Schedule Risk-Adjusted Contingencies,” represents funding and schedule contingencies in the program’s approved risk adjusted budget earmarked to cover the risk of cost and schedule overruns on the program’s contracts and projects.

OMB approval of a program’s risk-adjusted budget establishes the goals for reporting to OMB on program performance and is represented by the Program Risk-Adjusted Budget (PRB) and Schedule milestone “A.” The Federal Acquisition Streamlining Act (FASA) Title V requires that programs be managed within 10% of the budget goals. In this context, “program” means the approved capital investment or useful segment approved by OMB. By establishing PMBs that reflect challenging cost and schedule goals and adequate reserves, organizations can utilize EVM’s ability to provide early visibility into program cost and schedule performance problems, allowing time to take corrective action and enhancing the probability of achieving cost, schedule and performance goals within the PRB.

Conversely, organizations that do not establish reserves increase performance risk because nearly all programs contain some degree of cost and schedule uncertainty. Reserves held within a PM’s authority should be related to authorized work scope risk and opportunity; reserves held above the program permit senior management to balance resources as required: within portfolios, among programs. Organizations that do not allow for reserves at both levels may inadvertently encourage managers to “bury” the reserves in the budgets, thus, effectively ensuring they will be expended and denying objective visibility into performance.

4.3 Contracting for EVM

- EVM may apply to all contract types. The system or capital asset being acquired, if there is significant risk to achieving the cost, schedule and performance goals.
- Placing incentives on achieving a Schedule Performance Index (SPI) or Cost Performance Index (CPI) at or near 1.0 likely will result in the reported data being managed to those objectives, thereby diminishing the value of the process by removing early warning signals.
• An Advance Agreement or Letter of Acceptance includes a commitment to maintain and use the accepted EVMS as an integral management process on current as well as future contracts.

• PMs conduct IBRs on contracts with contractual and in-house EVMS requirements to achieve a mutual understanding of contract risks and opportunities and to determine whether the PMB includes the entire scope of work, is realistic, and, if executed as planned, will meet all of the contract’s technical, schedule and cost objectives.

• As part of their day-to-day management strategy, PMs should use EVM to ensure effective management of cost, schedule, and technical performance and to identify existing and emerging risks/opportunities.

• An EVMS surveillance approach is usually documented in a surveillance plan that is approved by appropriate internal management, recognized by customer management and, if necessary, jointly conducted with the assistance of the cognizant federal agency.

4.3.1 Contract Types
EVM may apply to all contract types regardless of the system or capital asset being acquired if there is significant risk to achieving the cost, schedule and performance goals. This includes firm-fixed price contracts if issued for development efforts. EVM may also apply to service contracts that meet the requirements of a performance-based service acquisition (PBSA), when they have discrete performance, cost and schedule requirements that can be measured.

However, EVMS may not be applicable to contracts issued in support of a program, e.g., those where the supplier will not control and manage the work scope and schedule, such as a staff augmentation contract. In such cases, EVMS requirements should not be applied to the staff augmentation contract itself but can simply be applied at the program level where scope, schedule, and cost data are present. Applying EVM at the program level presents new challenges for the program organization in connection with incorporating FFP contracts and internal resources into their program EVMS, for example:

• FFP contracts normally do not provide for access to suppliers’ cost data
• Government accounting systems, often times, for various reasons cannot get the appropriate cost data to support EVM; so workarounds may have to be used, i.e., estimated actuals.

The customer and supplier must manage for program success. This means both the customer and supplier depend on the appropriate contract type and EVM data. When the nature of the work is complex, use of EVM is critical to controlling and managing the effort. Where the external or internal risks are great the ability to plan and respond to those risks, including managing change, is essential to increase the likelihood of achieving the program objectives. Flexibly priced (cost-type or fixed price incentive) contracts are used when the nature of the work is complex and costs cannot be estimated with sufficient confidence to use an FFP contract. Application of EVM to these contracts is well documented in ANSI/EIA-748 and the NDIA EVMS Intent Guide. (See paragraphs 6.2 and 6.4 of this guide)

A Time and Material (T&M) contract should be used only when it is not possible at the time of placing the contract to estimate accurately the extent or duration of the work or to anticipate costs with any reasonable degree of confidence. The visibility into actual costs in a T&M
environment is accomplished by exploiting the standard component of T&M contracts - labor hours. If desired the hours delivered can be translated into financial terms by using the labor hour rates established for billing purposes. In this manner the customer and supplier can provide program EVM information to their senior management and external organizations.

FFP contracts are suitable when cost risk is low. Even though FFP contracts may not provide visibility into the supplier’s actual costs, EVM provides the means to objectively assess schedule progress, for example by using performance-based milestone payments as the EVM technique, and correlate the performance achieved with the program objectives. FFP contracts should seldom be used for development efforts.

4.3.2 Incentives

EVM supports contract incentives in two ways. First, EVM provides objective information to determine overrun or underrun status on flexibly priced contracts where the customer shares cost risk with the supplier. Second, EVM provides a means to assess the ability of the supplier’s management team to achieve the desired technical, schedule and cost objectives.

CAMs assess the performance to date, analyze variances from the PMB, estimate the contract cost at completion, and implement actions required to achieve technical, schedule, and cost objectives. Variances are an important element of the EVM process and need to be recognized as early warnings of deviations from the PMB. A desirable outcome may be compromised if the contract includes incentives for reporting a monthly Schedule Performance Index (SPI) and Cost Performance Index (CPI) near 1.0 (no variance). If the customer believes the contract is executable within such narrow bounds, the appropriate contract type would be FFP to reflect the low risk as opposed to cost type or fixed price incentive.

If EVM reporting incentives are desired, a customer may elect to use incentive fees to “look back” at key milestones, such as preliminary design reviews or critical design reviews, at the end of the contract or contract phase, to determine if performance data reported depicted contract status objectively and if estimated contract outcomes that were reported were reasonable based on performance to date. Such “performance-based reporting” would support performance-based contracting and reward contractors for managing effectively, thus reducing the need for oversight.

Performance-based incentives are recommended as they encourage early visibility into problems and management actions that in turn support the objectives of performance-based acquisition. When incentives are used in this way, it is possible – indeed likely – that a project could overrun a flexibly-priced contract, incurring a reduction in profit, while at the same time earning a maximum award fee for having submitted timely, reliable and actionable program management information.

Earned value may be used as the basis for contract payments. Earned value data reflect the value of completed work in the terms of the budget assigned, which presents an attractive rationale for paying on that basis, especially on FFP contracts that incorporate performance based payments. The completion of a milestone on which a payment will be based is objectively reflected by the earned value; in effect, performance based milestone payments and earned value is synonymous when both are characterized by demonstrable performance or completion criteria such as delivery. All contract activity must be included in the total value of payment milestones (i.e. the sum of all the payment milestones should equal the contract value).
4.3.3 Pre-Systems Acquisition Planning

EVMS documentation should be established in the standard form or forms used by the organization for process documentation, policies, and procedures. ANSI/EIA-748 does not require or suggest that descriptive documentation be created outside the normal organizational requirements, nor does it restrict the ability to effectively implement desired system changes.

Organizations will normally evaluate their internal management systems in accordance with their policies and good business practices to assure they meet the guidelines in ANSI/EIA-748. The guidelines are high-level and goal-oriented. They state the qualities and operational considerations of an integrated management system using earned value methods without mandating detailed system characteristics. They also enable implementation on large and small programs, projects, or contracts. EVM System Owners have sufficient flexibility within the Guidelines to implement EVM in a manner that employs the most effective and efficient performance management methods and techniques.

The NDIA EVMS Intent Guide is meant to be used by the EVM System Owner to complete a compliance map of the EVMS to the ANSI/EIA-748. Prior to receiving system acceptance, an organizational entity should prepare a compliance map documenting how its business processes conform to the Guidelines in order to satisfy a contractual requirement that its system meets the intent of ANSI/EIA-748. This compliance map verifies for both internal management and external customers or reviewers that the organization has done a comprehensive job of describing an EVMS that meets the intent of the ANSI/EIA-748. A compliance map may be an established best practice for displaying existing management processes, in order to demonstrate that the EVMS meets the intent of the ANSI/EIA-748 guidelines.

An Advance Agreement or other EVMS acceptance or recognition document between an organization and its supplier acknowledges that the supplier’s EVMS meets the intent of ANSI/EIA 748 and specifies that it will be maintained and used as an integral management process on current as well as future contracts. When an Advance Agreement or other acceptance or recognition document has not been provided, an organization should document its EVMS using the NDIA IPMD Intent Guide Compliance Map and provide the Map in its proposal to describe the EVMS it plans to use to manage the program during performance.

A Compliance Evaluation Review (CER) is conducted following the design and implementation of the EVMS to verify that the system being reviewed meets the intent of ANSI/EIA-748. The CER may occur prior to program award or contractual authorization to proceed (ATP) or may occur after these events. When the CER occurs prior to a project award or ATP, a viable alternative process is to complete a Compliance Map using the templates found in the ANSI Intent Guide, to map the proposed EVMS with ANSI/EIA-748, and obtain customer recognition that the EVMS meets the intent of those guidelines. Implementation of the approved EVMS is subsequently verified and accepted by the contract or project customer through the joint surveillance process defined in the NDIA IPMD Surveillance Guide. A separate acceptance for realigned organizations or newly established sites adopting a compliant EVMS is not required. For example, a corporate level EVMS could be implemented by an organization within the corporation without an additional CER. However implementation of a previously-accepted EVMS on a specific program or project should be verified through joint surveillance.

Cross-agency acceptance is best accomplished through the establishment of reciprocal agreements between agencies and organizations to mutually recognize EVM System acceptance or recognition documents. Alternative acceptance methods include the acceptance by one agency of another agency’s EVMS, followed by verification via surveillance using the process described in the NDIA Surveillance Guide, or for an agency to review the
documentation from the EVM System Owner’s compliance evaluation review as the basis for acceptance.

4.3.4 EVM Systems Acceptance

EVM System Acceptance is a process that involves reviewing an EVMS to determine that it meets the intent of the 32 EVMS Guidelines embodied in ANSI/EIA-748. A summary of the purpose, scope, applicability and location of the NDIA IPMD System Acceptance Guide, which contains process guidance for EVMS acceptance, is provided in paragraph 6.5 of this guide.

Once the project selected for compliance evaluation has implemented the EVMS, the compliance evaluation review (CER) begins. The EVMS Owner may elect to conduct or may have conducted a simulated CER, referred to as a Progress Assessment Review (PAR). The PAR affords an opportunity for the EVMS Owner to address any shortfalls in the design and/or implementation of the EVMS prior to the actual CER. The purpose of the EVMS CER is to determine if EVMS, as implemented on the project, meets the intent of the ANSI/EIA-748 guidelines. A CER may occur prior to project approval or ATP; if so, an alternative approach that utilizes the Intent Guide Templates to map the EVMS to the ANSI/EIA 748 guidelines can be used to determine whether the EVMS, as documented, meets the intent of ANSI/EIA 748. Following contract award or ATP, implementation of the EVMS can be verified and accepted by the customer via joint surveillance conducted in accordance with the guidance found in the NDIA IPMD Surveillance Guide. A separate EVMS acceptance for another site, subsidiary, or realigned organization applying a previously-accepted EVMS is not required. For example, an accepted corporate level EVMS could be implemented by an organization within the corporation without an additional CER. However, implementation and use of the accepted EVMS by that site or organization should be subsequently verified by surveillance.

4.3.5 Integrated Baseline Review

The Integrated Baseline Review (IBR) process provides an invaluable opportunity to compare customer and supplier PMs’ expectations and to address differences before problems arise. It provides project management teams with a thorough understanding of the contract or project plan and its risks and opportunities, allowing early intervention and application of resources to address project challenges. As a result both PMs increase their confidence in the PMB. Following the IBR, the initial risk register and risk/opportunity handling plans should be updated, if necessary, including additions or changes to the original list of risks/opportunities or their attributes, based on the results of the IBR.

The objective of the IBR is to confirm the following:

- All known program risks and opportunities are identified; acceptable risk handling plans are established and incorporated into the PMB or provided for in management reserve
- Adequate cost and schedule reserves have been established consistent with project risk not accounted for in the PMB
- The technical scope of work is fully included and consistent with authorizing documents;
- Key schedule milestones are identified;
- Supporting schedules reflect a logical flow to accomplish the technical work scope;
- Resources (budgets, facilities, personnel, skills, etc.) are adequate and available for the assigned tasks;
- Tasks are planned and can be measured objectively, relative to technical progress;
- Underlying PMB rationales are reasonable; and
- Managers have identified appropriate techniques to measure their progress

A summary of the purpose, scope, and applicability of the IBR is found in paragraph 6.6 of this guide. The NDIA IPMD’s Integrated Baseline Review (IBR) Guide contains a complete process overview and guidance for planning and executing IBRs.

4.3.6 Surveillance

Surveillance is the continuous process of reviewing the health of the earned value management system (EVMS) as applied to one or more projects. The purpose of surveillance is to ensure the EVMS is effectively used to manage cost, schedule, and technical performance, and that the performance data generated are accurate and reliable. An effective surveillance process ensures that the key elements of the system are maintained over time and on subsequent applications. Prime suppliers are responsible for surveillance of subcontractors.

Program surveillance results are summarized to determine overall compliance and identify areas in need of corrective action. Findings may be categorized overall as either systemic or individual in nature. A systemic finding, occurring on more than one program, is considered serious, and requires prompt corrective action to regain compliance with the organization’s accepted EVMS. The perceived severity of an individual (non-systemic) finding is based primarily on the nature of the finding and its impact upon the overall effectiveness of a program’s integrated performance management processes and the reliability of the management data they generate.

The customer should consider the effectiveness of the supplier’s surveillance process when deciding whether to observe, review the findings of internal surveillance, or engage in joint surveillance. When joint surveillance is conducted the customers are members of the surveillance team and assigned responsibilities. Objectives of this process are identical whether the surveillance is conducted by a Government customer on a prime supplier, or by a prime supplier on a subcontractor.

Joint surveillance is an approach usually documented in a surveillance plan that is approved by appropriate supplier and customer management. The plan typically spans multiple years and is supplemented by an annual schedule containing the programs selected for surveillance in that year.

Management’s surveillance planning objective should be to select EVMS guidelines or sub processes for review based upon the risk associated with the remaining work and content specific to the programs that will be reviewed. The selection of EVM guidelines and processes reviewed should be relevant to the program phase and should provide an opportunity for coaching or mentoring during the surveillance process. Factors influencing the need for contract/project selection include: risk, maturity of implementation, size and complexity, and the independence of the company’s surveillance team.

Summarized metrics are used to identify and characterize process and systemic problems across multiple programs. These are subsequently addressed by updating training and/or EVMS process improvements. This is also known as system surveillance.

A summary of the purpose, scope, applicability and location of the NDIA IPMD Surveillance Guide is provided in paragraph 6.7 of this guide.
5 Integrated Performance Management and Measurement

5.1 Measuring Performance Progress

Variance are neither “good” nor “bad”; they are the early warning indicators of emerging problems and quantifiers of deviations from the plan useful for managing complex projects.

The strength of EVM as a management tool lies in obtaining objective measurements of work accomplished at the level of the organization where integration of work scope, schedule and cost and risk management occurs (the control account). Schedules are statused with progress based on work accomplished in accordance with technical completion (or exit) criteria. Progress (EV) is measured at least monthly, but may be done more frequently to coincide with the organization’s business practice (for example, when schedules are statused weekly or biweekly). Comparison of actual program performance to the schedule provides a means to determine and evaluate potential program schedule risks.

The timing of schedule progress assessment should coincide with EVM performance measurement to provide meaningful performance data. Control Account Managers (CAMs) assess schedule progress by reporting their accomplishments on assigned tasks, the remaining task durations or estimated completion dates for any tasks in progress but not yet complete and revise, as necessary, the start and completion dates for work not yet started.

EVM provides visibility into key performance measurement data at time now as illustrated in Figure 9. The EVM data at time now includes the planned budget in the PMB, the work completed expressed in terms of the PMB budget assigned to that work, and the actual cost incurred for completing that work.

The EVM data provide insight into these management questions.

- How much of the work in the budget plan (planned value) has been accomplished or “earned” (EV)?
- How much did the work accomplished actually cost (actual cost)?
- How does the actual cost of the work accomplished compare with its earned value?
- When will the contract or project be finished and how much will it cost?
5.2 Management Analysis

- Performance data provide PMs the answer to the questions “Where am I?” and “How much planned effort remains?”
- The Estimate to Complete (ETC), for the effort included in the scheduled tasks and budget for the work remaining, addresses the questions “When will I complete the work?” and “How much will it cost to complete the contract or project?”
- The analysis of variances informs the PM about deviations from plan, as well as risks and opportunities (realized, retired, and identified) in the remaining work scope, schedule and cost.
- The program management team must implement corrective actions, as needed, to achieve program technical, schedule and cost objectives.

CAMs analyze their variances and, where possible, develop corrective action plans to reduce or eliminate unfavorable variances and restore positive performance trends. Variances may be favorable or unfavorable. Favorable variances may represent opportunities (the flip side of risk), while unfavorable variances may quantify the effect of realized risk on cost and schedule performance. PMs should be alert to the possibility that favorable variances may offset overruns. Also, while ANSI/EIA-748 emphasizes strict controls on PMB changes that erase current period or historical variances, it does not prohibit replanning future work to enable the capture and return to MR of excess budget associated with realized opportunities.

Variance Analysis provides CAMs the ability to communicate deviations from the plan in terms of schedule, cost and at completion variances. This analysis should summarize significant schedule and cost problems and their causes, actions needed to achieve the projected outcomes, and major challenges to achieving project performance objectives. As control account trends become evident, any risks or opportunities identified should be incorporated into the project risk management process.
At each management review point (typically monthly), CAMs review the control account cost and schedule data and assess the ETC and EAC for their control accounts. CAMs make their assessments based on historical performance, current performance metrics, and future work scope remaining to be completed, considering potential process improvements, risk assessments, risk and opportunity handling plans, and other applicable factors that may affect remaining work. Schedule performance and risk are analyzed with respect to “behind schedule,” “on schedule” or “ahead-of-schedule” conditions and projections.

When integrated project team members identify needed corrective actions that cannot be immediately taken, they should be assigned to a responsible team member for planning and execution.

PMs should review control account schedule and cost variances periodically for the total contract or project impacts and to provide to management indications of overall program performance. Based on this review, the program EAC is updated.

Potential risks and opportunities may be identified at any WBS level. Once accepted by management they are tracked along with their estimated technical, schedule, and cost impacts. If the PM determines a risk (or opportunity) handling task should be included in the PMB, the necessary resources may be authorized through the use of MR. EVM is then used to manage and measure performance on the task as needed to achieve project objectives.

5.3 Program Progress Communication

- Communicating program status is an essential activity for all projects.
- Its two primary purposes are to provide essential control account information facilitating informed management decisions and to communicate performance status to senior leadership and stakeholders.

Performance or progress assessment using EVM information is most useful when the EV data are provided by CAMs who are actively managing cost, schedule and scope within the project or contract. The EV data provide the details at the control account level where progress is achieved and corrective actions are taken when variances from the PMB occur. Timeliness in communicating the integrated performance information among the program CAMs and the PM is essential in establishing confidence in the actions proposed as a result of performance analysis and risk monitoring.

Monitoring progress on risk handling plans is required to ensure the plans are being effectively implemented and are in fact eliminating or reducing the risk. Corrective action plans should be implemented if a risk handling plan is not effective in reducing the risk. Analysis may also result in additional risk mitigation measures, the identification of new risk or opportunity, or revisions to the risk management plan.

The customer can benefit most when engaged in the program reviews where the team addresses the performance data, variance analysis, risk tracking, and corrective action plans taken to achieve program objectives. Even though there are provisions for formal preparation and reporting of variance analysis, performance analysis is a continuous program management activity. Waiting for information from a supplier’s reports does not promote timely and effective project management decision making. The performance reports should reflect the management analysis and actions identified in the program management reviews.

Organizations should establish a capability for contract and project performance status that includes technical, schedule, cost, performance (EVM) data, and risk that is consistently
summarized for use in decision making at all levels of program management and the stakeholder organizations. The use of Contract Performance Reports (CPR) or other EVM reports does not constitute the entire universe of available contract or project information. Daily and weekly reports, meetings, design and program reviews, risk review boards, and other avenues for obtaining accurate information, including technical performance, should be used as appropriate.

For reporting to senior decision makers, EVM facilitates timely, accurate and integrated schedule, cost and technical performance information. It is important that EVM and risk measurement data be available from a single source and that the data provide insight to support decision-making at the program-level as well as for higher organizational levels.

5.4 Change Management

- Changes in all programs are inevitable.
- The integrity of the PMB is maintained through a change management process that ensures the PMB accurately represents only the authorized work to be accomplished.

The primary objective of change management is to maintain the integrity of the PMB and performance information. Because the change management process is intended to control replanning of the remaining future work, PMB changes must not be used as a means to modify actual performance and progress information. Changes to performance and progress information may sometimes be necessary to correct accounting and other errors significant to the accuracy of the EVM information. Acceptable retroactive changes are those that correct errors, make routine accounting adjustments, or improve the accuracy of the performance measurement data and all such changes must be justified, explained and documented.

Corrections should always be made if incorrect data are eroding the management value of the system, but management reports will be compromised if current plans or program history (performance to date information) are constantly being changed. If the objective of replanning becomes a routine to eliminate variances or to attain a specific performance index (e.g., SPI and/or CPI), then EVMS will not only lose its value for objective progress assessment and management decision making, but it will also compromise organizational compliance with its implementation of ANSI/EIA-748. Regardless of the scope of the replanning effort, a complete historical record of the original PMB and all changes must be maintained for analytical, reporting, and lessons learned purposes.

The change management process must be able to accommodate the routine “replanning” (prospective, internal changes within the PMB), external, customer-directed changes (contract modifications), and reprogramming (changes within existing contract scope that result in an over-target baseline). The same process is applicable for in-house efforts.

The objective of replanning within the PMB is to reflect a revised program plan for in-scope (i.e., within the project target cost or approved total allocated budget) changes to future budgets. Some examples of appropriate replanning include:

- Changes resulting from a design review that modifies requirements;
- A major shift in the resource profile required to accomplish the remaining effort;
- Funding restrictions or modifications that affect future resource availability;
- Rate changes (including overhead rates), which are significant enough to warrant replanning;
- Changes to future budget, which will not be required due to the realization of opportunities, to return it to MR;
- Issuance of MR budget for the purpose of planning a prospective risk handling activity resulting from the identification of a new risk or one whose potential consequence or impact has become elevated.

Figure 10 illustrates the use of management reserve applied to the PMB where the BAC increased but the program schedule completion, Point C, remains unchanged.

![Figure 10. PMB Replan](image)

When a program is unable to stay within the threshold of scope, schedule and budget objectives defined in the PB (the intersection of the PB and Point B illustrated in Figure 10), the agency may decide to change the technical objectives, extend the schedule and/or make additional budget or funding available to the program (for example, by reprioritizing its missions), which may result in a modification to the PMB. When additional scope, schedule, or budget is applied to the program PMB it must be done through the change management process. An IBR is required by OMB on the new PMB before program goals may be changed.

Figure 11 illustrates a reprogramming example where program funding and schedule contingencies are utilized. The schedule completion date is extended beyond the program management reserve, Point B, but remains within the program risk-adjusted schedule contingency, Point A. The PMB is increased by the use of the program management reserve up to the PB. The EAC now extends above the PB due to performance overruns prior to time now but remains within the program funding risk-adjusted contingency of the PRB.
6 EVM Application Guidance

6.1 EVM Application Framework

The purpose of this section is to provide a high-level relationship framework for EVM application using applicable NDIA IPMD guides within the acquisition life cycle. It is very important to recognize that EVMS requirements should be implemented to provide the management information needed for effective management of the contract or project. In addition, it is important to recognize that no single EVMS application can meet every management need for performance measurement due to variations in organizations, products, processes, and working relationships.

During Pre-Systems Acquisition, organizations should plan for EVM application to both work performed by suppliers and work performed in house. Both the supplier and customer organizations should ensure EVM is integrated with other documented program management processes and understood by those who will implement and use EVM. Supplier and internal EVM data may be integrated using a common integrated program process for effective and efficient program performance analysis and reporting.

Typically, EVMS implementation requires 60 to 90 days after contract or project authorization, where documented business processes integrating EVM capability have previously been institutionalized. Surveillance begins after completion of implementation and continues through the contract or project life cycle.

In Figure 12, the NDIA IPMD Guides supporting EVMS application in accordance with ANSI/EIA-748 are identified with the applicable acquisition life cycle for the customer and supplier organizations. The number in parentheses after each guide name identifies the section below, where an explanation of the applicable guide and its intended use may be found. Paragraph 6.2 provides insight into ANSI/EIA-748, which is essential for effective application of EVM.
<table>
<thead>
<tr>
<th>Acquisition Life Cycle</th>
<th>Acceptance Authority or Customer</th>
<th>EVM System Owner or Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems Acquisition Approval or Award</td>
<td>Accept: Intent Guide (6.4) Acceptance Guide (6.5)</td>
<td>Implement: Intent Guide (6.4)</td>
</tr>
</tbody>
</table>

Figure 12. NDIA Guide Applicability

6.2 ANSI/EIA-748, Earned Value Management Systems

ANSI/EIA-748 is a commercial standard containing earned value management system guidelines, which incorporate best business practices to provide strong benefits for program or enterprise planning and control. These guidelines describe processes for integrating program scope, schedule, and cost objectives, and use of earned value techniques for performance measurement during program execution. EVMS provides a sound basis for problem identification, corrective actions, and management replanning as may be required. ANSI/EIA 748 also recognizes that scalability in employing the principles of EVMS is fundamental to its successful application on any program and that the EVMS guidelines, which are applicable to large complex and/or high risk programs, can be scaled as appropriate to enable any program regardless of its size and complexity to realize the benefits of earned value management.

The EVMS guidelines in Section 2 of ANSI/EIA-748 are purposely-high level and goal oriented as they are intended to state the qualities and operational considerations of an integrated management system using earned value analysis methods without mandating detail system characteristics. Different organizations establish and apply a management system that best suits their management styles and business environments. In accordance with ANSI/EIA 748, an EVMS must, “first and foremost, meet the organization’s needs and good business practices.”

When planning for EVMS is included in the Pre-Systems Acquisition planning and budgeting phases of the capital asset programming process, EVMS may be implemented and provide a PMB for management of the contract or project within the shortest possible timeframe following contract award or authorization to proceed.

6.3 NDIA IPMD Earned Value Management Systems (EVMS) Application Guide

The purpose of the EVMS Application Guide is to provide guidance for the application and use of EVM during all phases of the acquisition lifecycle. In addition, it provides users with insight into the integrated use of all of the NDIA Integrated Program Management Division (IPMD) Guides to ensure high confidence among any organization’s program and senior management, whether government, commercial, or industry customer, or supplier. The Application Guide also ensures that users have confidence in their Earned Value Management System (EVMS), in its ongoing compliance with ANSI/EIA-748, and in its continuing ability to meet the organization’s need for reliable program performance information for its management decisions.
6.4 NDIA IPMD Earned Value Management Systems Intent Guide

The primary purpose of the EVMS Intent Guide is to define the management value and intent of each of the EVMS guidelines found in ANSI/EIA-748. It also lists typical attributes and typical outputs associated with each guideline, which provide objective evidence indicative of an EVM system’s acceptability. Note that these attributes and outputs are provided as typical examples only. Because ANSI/EIA does not mandate specific requirements for EVM systems, their attributes and outputs will vary depending on the individual business needs and characteristics of the organizations employing them. Templates and examples for developing a process compliance map, useful for demonstrating that an EVMS meets the intent of ANSI/EIA 748, are found in the Intent Guide’s Appendix A and in Section 3 respectively. The objective of the compliance map is to demonstrate that the EVMS Owner has thought through each guideline and can describe how its business process meets the intent of the guideline.

The Intent Guide is applicable for use by either a government or supplier organization whenever the documentation, implementation and use of an EVMS meeting the guidelines in ANSI/EIA-748 are required. It is recommended for use in performing an initial EVMS compliance evaluation review (CER) preparatory to obtaining system acceptance. A customer or independent reviewer may use the compliance map as the basis for verifying that the EVMS meets the intent of the guidelines.

To be most effective, an EVM process should be documented on an organization basis rather than program by program. Implementation of an organization’s EVMS may be tailored or “scaled” as needed, in accordance with the organization’s documented process, to meet individual program needs.

6.5 NDIA IPMD Earned Value Management Systems Acceptance Guide

System acceptance is a process for reviewing an Earned Value Management System (EVMS) to determine and accept that it meets the intent of ANSI/EIA 748. The EVMS Acceptance Guide defines a standard process whereby an EVM System Owner (government or industry) with a first-time requirement to manage a program or contract using an EVMS that meets the intent of the ANSI/EIA-748 guidelines can accomplish the following:

a) Understand the need for and effectively design an EVMS;
b) Evaluate whether the EVMS is capable of meeting the intent of ANSI/EIA-748;
c) Implement the EVMS on the acquisition requiring it successfully;
d) Prepare and provide documentation that substantiates implementation;
e) Obtain EVMS acceptance that will satisfy the current and future requirements for an approved EVMS.

The EVMS Acceptance Guide includes appendices containing qualifications and guidance for selecting Compliance Evaluation Review (CER) team members, an outline for a CER Report, and considerations for CER execution.

6.6 NDIA IPMD Integrated Baseline Review (IBR) Guide

The Integrated Baseline Review Guide was developed to improve the consistency of the overall IBR process by providing guidance for planning and executing both pre-award and post-award IBRs. The IBR Guide describes the attributes of an effective IBR and discusses a baseline review process that will lead to a better understanding of program risks and opportunities. The IBR process enables managers to effectively utilize the project PMB to assess performance,
and to better manage inherent risks. The IBR Process should continue throughout the life of a project and consists of the following jointly executed project management activities:

- IBR Need Assessment,
- IBR Preparation,
- IBR Execution, and
- IBR Results and Close-out.

The key elements in the IBR Process are the following:

- Promotes customer PM and supplier PM knowledge of the PMB
- Improves communications by enabling a comparison of each PM’s understanding of the technical/schedule/cost objectives and identification of any differences so they can be addressed before problems arise
- Lays a solid foundation for mutual understanding of risks and opportunities
- Determines whether the PMB covers the entire scope of work, is realistic, and, if executed as planned, satisfies all technical/schedule/cost objectives
- Provides PM teams with a thorough understanding of the PMB and its risks, enabling early intervention to mitigate risks and exploit opportunities
- Ensures that meaningful and reliable performance monitoring techniques are employed
- Assesses the PMB’s capability to provide timely, reliable, and actionable schedule, cost and scope information
- Provides the customer PM with an understanding of the supplier’s management processes for effective and integrated technical/schedule/cost control.

The IBR Guide is the principal IBR reference and should be used to implement an integrated baseline review discipline on an acquisition program. PMs are strongly encouraged to use this guide during IBR training, when preparing for an IBR, and then again during the actual execution and conduct of the IBR.

6.7 NDIA IPMD Surveillance Guide

Surveillance is the process of reviewing the health of the EVMS applied to one or more contracts or projects. Surveillance focuses on ensuring that the key elements of the EVMS process are maintained over time and on subsequent applications to effectively manage cost, schedule, and technical performance.

The Surveillance Guide provides surveillance process guidance and characteristics of successful EVMS surveillance programs. It is intended to assist suppliers in the planning and execution of both internal surveillance and subcontractor surveillance, and to provide guidance for non-DoD organizations with EVMS oversight responsibility.

The Surveillance Guide defines a standard surveillance approach for all parties because it ensures a common understanding of expectations, encourages efficiencies through the use of a uniform process, and gives consistent guidance for all stakeholders in the EVMS process.

An organization working in an EVMS environment should use this guide as a model for establishing a cost-effective EVMS surveillance process. It can also be used by organizations...
with existing EVMS processes seeking to make surveillance more effective and to standardize approaches on all programs.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Actual Cost</td>
</tr>
<tr>
<td>ACWP</td>
<td>Actual Cost of Work Performed</td>
</tr>
<tr>
<td>ANSI/EIA</td>
<td>American National Standards Institute/Electronic Industries Alliance</td>
</tr>
<tr>
<td>ATP</td>
<td>Authorization to Proceed</td>
</tr>
<tr>
<td>BAC</td>
<td>Budget at Completion</td>
</tr>
<tr>
<td>BC</td>
<td>Business Case</td>
</tr>
<tr>
<td>BCWP</td>
<td>Budgeted Cost for Work Performed</td>
</tr>
<tr>
<td>BCWS</td>
<td>Budgeted Cost for Work Scheduled</td>
</tr>
<tr>
<td>CAP</td>
<td>Capital Asset Plan</td>
</tr>
<tr>
<td>CAM</td>
<td>Control Account Manager</td>
</tr>
<tr>
<td>CER</td>
<td>Compliance Evaluation Review</td>
</tr>
<tr>
<td>CPR</td>
<td>Contract Performance Report</td>
</tr>
<tr>
<td>CPI</td>
<td>Cost Performance Index</td>
</tr>
<tr>
<td>EAC</td>
<td>Estimate at Completion</td>
</tr>
<tr>
<td>ETC</td>
<td>Estimate to Complete</td>
</tr>
<tr>
<td>EV</td>
<td>Earned Value</td>
</tr>
<tr>
<td>EVM</td>
<td>Earned Value Management</td>
</tr>
<tr>
<td>EVMS</td>
<td>Earned Value Management System</td>
</tr>
<tr>
<td>FASA</td>
<td>Federal Acquisition Streamlining Act</td>
</tr>
<tr>
<td>FFP</td>
<td>Firm Fixed Price</td>
</tr>
<tr>
<td>IBR</td>
<td>Integrated Baseline Review</td>
</tr>
<tr>
<td>IPT</td>
<td>Integrated Project Team</td>
</tr>
<tr>
<td>ICR</td>
<td>Initial Compliance Review</td>
</tr>
<tr>
<td>IMS</td>
<td>Integrated Master Schedule</td>
</tr>
<tr>
<td>IPMD</td>
<td>Integrated Program Management Division</td>
</tr>
<tr>
<td>LOE</td>
<td>Level of Effort</td>
</tr>
<tr>
<td>MR</td>
<td>Management Reserve</td>
</tr>
<tr>
<td>NDIA</td>
<td>National Defense Industrial Association</td>
</tr>
<tr>
<td>OMB</td>
<td>Office of Management and Budget</td>
</tr>
<tr>
<td>PAR</td>
<td>Progress Assessment Review</td>
</tr>
<tr>
<td>PB</td>
<td>Program (or Project) Budget</td>
</tr>
<tr>
<td>PBSA</td>
<td>Performance Based Service Acquisition</td>
</tr>
<tr>
<td>PM</td>
<td>Program (or Project) Manager</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PMB</td>
<td>Performance Measurement Baseline</td>
</tr>
<tr>
<td>PMSC</td>
<td>Program Management Systems Committee</td>
</tr>
<tr>
<td>PRB</td>
<td>Program Risk-Adjusted Budget</td>
</tr>
<tr>
<td>PV</td>
<td>Planned Value</td>
</tr>
<tr>
<td>RM</td>
<td>Risk Management</td>
</tr>
<tr>
<td>SPI</td>
<td>Schedule Performance Index</td>
</tr>
<tr>
<td>T&M</td>
<td>Time and Material</td>
</tr>
<tr>
<td>UB</td>
<td>Undistributed Budget</td>
</tr>
<tr>
<td>WBS</td>
<td>Work Breakdown Structure</td>
</tr>
</tbody>
</table>